1.廢水的主要物理特性指標有哪些?
⑴溫度:廢水的溫度對廢水處理過程的影響很大,溫度的高低直接影響微生物活性。一般城市污水處理廠的水溫為10~25攝氏度之間,工業廢水溫度的高低與排放廢水的生產工藝過程有關。
⑵顏色:廢水的顏色取決于水中溶解性物質、懸浮物或膠體物質的含量。新鮮的城市污水一般是暗灰色,如果呈厭氧狀態,顏色會變深、呈黑褐色。工業廢水的顏色多種多樣,造紙廢水一般為黑色,酒糟廢水為黃褐色,而電鍍廢水藍綠色。
⑶氣味:廢水的氣味是由生活污水或工業廢水中的污染物引起的,通過聞氣味可以直接判斷廢水的大致成分。新鮮的城市污水有一股發霉的氣味,如果出現臭雞蛋味,往往表明污水已經厭氧發酵產生了硫化氫氣體,運行人員應當嚴格遵守防毒規定進行操作。
⑷濁度:濁度是描述廢水中懸浮顆粒的數量的指標,一般可用濁度儀來檢測,但濁度不能直接代替懸浮固體的濃度,因為顏色對濁度的檢測有干擾作用。
⑸電導率:廢水中的電導率一般表示水中無機離子的數量,其與來水中溶解性無機物質的濃度緊密相關,如果電導率急劇上升,往往是有異常工業廢水排入的跡象。
⑹固體物質:廢水中固體物質的形式(SS、DS等)和濃度反映了廢水的性質,對控制處理過程也是非常有用的。
⑺可沉淀性:廢水中的雜質可分為溶解態、膠體態、游離態和可沉淀態四種,前三種是不可沉淀的,可沉淀態雜質一般表示在30min或1h內沉淀下來的物質。
2.廢水的化學特性指標有哪些?
廢水的化學性指標很多,可以分為四類:①一般性水質指標,如pH值、硬度、堿度、余氯、各種陰、陽離子等;②有機物含量指標,生物化學需氧量BOD5、化學需氧量CODCr、總需氧量TOD和總有機碳TOC等;③植物性營養物質含量指標,如氨氮、硝酸鹽氮、亞硝酸鹽氮、磷酸鹽等;④有毒物質指標,如石油類、重金屬、氰-化物、硫化物、多環芳烴、各種氯代有機物和各種農藥等。
在不同的污水處理廠,要根據來水中污染物種類和數量的不同確定適合各自水質特點的分析項目。
3.一般污水處理廠需要分析的主要化學指標有哪些?
一般污水處理廠需要分析的主要化學指標如下:
⑴pH值:pH值可以通過測量水中的氫離子濃度來確定。pH值對廢水的生物處理影響很大,硝化反應對pH值更加敏感。城市污水的pH值一般在6~8之間,如果超出這一范圍,往往表明有大量工業廢水排入。對于含有酸性物質或堿性物質的工業廢水,在進入生物處理系統之前需要進行中和處理。
⑵堿度:堿度能反應出廢水在處理過程中所具有的對酸的緩沖能力,如果廢水具有相對高的堿度,就可以對pH值的變化起到緩沖作用,使pH值相對穩定。堿度表示水樣中與強酸中的氫離子結合的物質的含量,堿度的大小可用水樣在滴定過程中消耗的強酸量來測定。
⑶CODCr:CODCr是廢水中能被強氧化劑重鉻酸鉀所氧化的有機物的數量,以氧的mg/L計。
⑷BOD5:BOD5是廢水中有機物被生物降解所需要的氧量,是衡量廢水可生化性的指標。
⑸氮:在污水處理廠中,氮的變化和含量分布為工藝提供參數。污水處理廠進水中的有機氮和氨氮含量一般較高,而硝酸鹽氮和亞硝酸鹽氮含量一般較低。初沉池氨氮的增加一般表明沉淀污泥開始厭氧,而二沉池硝酸氮和亞硝酸氮的增加,表明硝化作用已經發生。生活污水中氮的含量一般為20~80mg/L,其中有機氮8~35mg/L,氨氮為12~50mg/L,硝酸氮和亞硝酸氮的含量很低。工業廢水中有機氮、氨氮、硝酸氮和亞硝酸氮含量因水而異,有的工業廢水中氮的含量極低,在利用生物法處理時,需要投加氮肥以補充微生物所需的氮含量,而出水中氮的含量過高時,又需要進行脫氮處理,以防止受納水體出現富營養化現象。
⑹磷:生物污水中磷的含量一般為2~20mg/L,其中有機磷1~5mg/L,無機磷為1~15mg/L。工業廢水中磷的含量差別很大,有的工業廢水中磷的含量極低,在利用生物法處理時,需要投加磷肥以補充微生物所需的磷含量,而出水中磷的含量過高時,又需要進行除磷處理,以防止受納水體出現富營養化現象。
⑺石油類:廢水中的油大多是不溶于水的,且浮在水面上。進水中的油會影響充氧效果、導致活性污泥中的微生物活性降低,進入到生物處理構筑物的混合污水含油濃度通常不能大于30~50mg/L。
⑻重金屬:廢水中的重金屬主要來自工業廢水,其毒性很大。污水處理廠通常沒有較好的處理方法,通常需要在排放車間內進行就地處理達到國家排放標準后再進入排水系統,如果污水處理廠出水中重金屬含量上升,往往說明預處理出現了問題。
⑼硫化物:水中的硫化物超過0.5mg/L后,就帶有令人厭惡的臭雞蛋味,且有腐蝕性,有時甚至會引起硫化氫中毒事件。
⑽余氯:使用氯消毒時,為保證在輸送過程中微生物的繁殖,出水中余氯(包括游離性余氯和化合性余氯)是消毒工藝的控制指標,一般不超過0.3mg/L。
4.廢水的微生物特性指標有哪些?
廢水的生物性指標有細菌總數、大腸菌群數、各種病原微生物和病毒等。醫院、肉類聯合加工企業等廢水排放前必須進行消毒處理,國家有關污水排放標準對此已經作出了規定。污水處理廠一般不對進水中的生物性指標進行檢測和控制,但對處理后的污水排放之前要進行消毒處理,以控制處理污水對受納水體的污染。如果對二級生物處理出水再進行深度處理后回用,就更需要在回用前進行消毒處理。
⑴細菌總數:細菌總數可作為評價水質清潔程度和考核水凈化效果的指標,細菌總數增多說明水的消毒效果較差,但不能直接說明對人體的危害性有多大,必須結合糞大腸菌群數來判斷水質對人體的安全程度。
⑵大腸菌群數:水中大腸菌群數可間接地表明水中含有腸道病菌(如傷寒、痢疾、霍亂等)存在的可能性,因此作為保證人體健康的衛生指標。污水回用做雜用水或景觀用水時,就有可能與人體接觸,此時必須檢測其中糞大腸菌群數。
⑶各種病原微生物和病毒:許多病毒性疾病都可以通過水傳染,比如引起肝炎、小兒麻痹癥等疾病的病毒存在于人體的腸道中,通過病人糞便進入生活污水系統,再排入污水處理廠。污水處理工藝對這些病毒的去除作用有限,在將處理后污水排放時,如果受納水體的使用價值對這些病原微生物和病毒有特殊要求時,就需要消毒并進行檢測。
5.反映水中有機物含量的常用指標有哪些?
有機物進入水體后,將在微生物的作用下進行氧化分解,使水中的溶解氧逐漸減少。當氧化作用進行的太快、而水體不能及時從大氣中吸收足夠的氧來補充消耗的氧時,水中的溶解氧可能降得很低(如低于3~4mg/L),進而影響水中生物正常生長的需要。當水中的溶解氧耗盡后,有機物開始厭氧消化,發生臭氣,影響環境衛生。
由于污水中所含的有機物往往是多種組分的極其復雜的混合體,因而難以一一分別測定各種組分的定量數值。實際上常用一些綜合指標,間接表征水中有機物含量的多少。表示水中有機物含量的綜合指標有兩類,一類是以與水中有機物量相當的需氧量(O2)表示的指標,如生化需氧量BOD、化學需氧量COD和總需氧量TOD等;另一類是以碳(C)表示的指標,如總有機碳TOC。對于同一種污水來講,這幾種指標的數值一般是不同的,按數值大小的排列順序為TOD>CODCr>BOD5>TOC
6.什么是總有機碳?
總有機碳TOC(英文Total Organic Carbon的簡寫)是間接表示水中有機物含量的一種綜合指標,其顯示的數據是污水中有機物的總含碳量,單位以碳(C)的mg/L來表示。TOC的測定原理是先將水樣酸化,利用氮氣吹脫水樣中的碳酸鹽以排除干擾,然后向氧含量已知的氧氣流中注入一定量的水樣,并將其送入以鉑鋼為觸媒的石英燃燒管中,在900oC~950oC的高溫下燃燒,用非色散紅外氣體分析儀測定燃燒過程中產生的CO2量,再折算出其中的含碳量,就是總有機碳TOC(詳見GB13193--91)。測定時間只需要幾分鐘。
一般城市污水的TOC可達200mg/L,工業廢水的TOC范圍較寬,最高的可達幾萬mg/L,污水經過二級生物處理后的TOC一般<50mg/L,較清潔的河水TOC一般<10mg/L。在污水處理的研究中有用TOC作為污水有機物指標的,但在常規污水處理運行中一般不分析這個指標。
7.什么是總需氧量?
總需氧量TOD(英文TotalOxygenDemand的簡寫)是指水中的還原性物質(主要是有機物)在高溫下燃燒后變成穩定的氧化物時所需要的氧量,結果以mg/L計。TOD值可以反映出水中幾乎全部有機物(包括碳C、氫H、氧O、氮N、磷P、硫S等成分)經燃燒后變成CO2、H2O、NOx、SO2等時所需要消耗的氧量??梢奣OD值一般大于CODCr值。目前我國尚未將TOD納入水質標準,只是在污水處理的理論研究中應用。
TOD的測定原理是向氧含量已知的氧氣流中注入一定量的水樣,并將其送入以鉑鋼為觸媒的石英燃燒管中,在900oC的高溫下瞬間燃燒,水樣中的有機物即被氧化,消耗掉氧氣流中的氧。氧氣流中原有氧量減去剩余氧量就是總需氧量TOD。氧氣流中的氧量可以用電極測定,因而TOD的測定只需幾min。
8.什么是生化需氧量?
生化需氧量全稱為生物化學需氧量,英文是BiochemicalOxygenDemand,簡寫為BOD,它表示在溫度為20oC和有氧的條件下,由于好氧微生物分解水中有機物的生物化學氧化過程中消耗的溶解氧量,也就是水中可生物降解有機物穩定化所需要的氧量,單位為mg/L。BOD不僅包括水中好氧微生物的增長繁殖或呼吸作用所消耗的氧量,還包括了硫化物、亞鐵等還原性無機物所耗用的氧量,但這一部分的所占比例通常很小。因此,BOD值越大,說明水中的有機物含量越多。
在好氧條件下,微生物分解有機物分為含碳有機物氧化階段和含氮有機物的硝化階段兩個過程。在20oC的自然條件下,有機物氧化到硝化階段、即實現全部分解穩定所需時間在100d以上,但實際上常用20oC時20d的生化需氧量BOD20近似地代表完-全生化需氧量。生產應用中仍嫌20d的時間太長,一般采用20oC時5d的生化需氧量BOD5作為衡量污水有機物含量的指標。經驗表明,生活污水和各種生產污水的BOD5約為完-全生化需氧量BOD20的70~80%。
BOD5是確定污水處理廠負荷的一個重要參數,可用BOD5值計算廢水中有機物氧化所需要的氧量。含碳有機物穩定化所需要的氧量可稱為碳類BOD5,如果進一步氧化,就可以發生硝化反應,硝化菌將氨氮轉化為硝酸鹽氮和亞硝酸鹽氮時所需要的氧量可成為硝化BOD5。一般的二級污水處理廠只能去除碳類BOD5,而不去除硝化類BOD5。由于在去除碳類BOD5的生物處理過程中,硝化反應不可避免地要發生,因此使得BOD5的測定值比實際有機物的耗氧量要高一些。
BOD測定時間較長,常用的BOD5測定需要5d時間,因此一般只能用于工藝效果評價和長周期的工藝調控。對于特定的污水處理場,可以建立BOD5和CODCr的相關關系,用CODCr粗略估計BOD5值來指導處理工藝的調整。
9.什么是化學需氧量?
化學需氧量的英文是Chemical Oxygen Demand,它是指在一定條件下,水中有機物與強氧化劑(如重鉻酸鉀、高錳酸鉀等)作用所消耗的氧化劑折合成氧的量,以氧的mg/L計。
當用重鉻酸鉀作為氧化劑時,水中有機物幾乎可以全部(90%~95%)被氧化,此時所消耗的氧化劑折合成氧的量即是通常所稱的化學需氧量,常簡寫為CODCr(具體分析方法見GB11914--89)。污水的CODCr值不僅包含了水中的幾乎所有有機物被氧化的耗氧量,同時還包括了水中亞硝酸鹽、亞鐵鹽、硫化物等還原性無機物被氧化的耗氧量。
10.什么是高錳酸鉀指數(耗氧量)?
用高錳酸鉀作為氧化劑測得的化學需氧量被稱為高錳酸鉀指數(具體分析方法見GB11892--89)或耗氧量,英文簡寫為CODMn或OC,單位為mg/L。
由于高錳酸鉀的氧化能力比重鉻酸鉀要弱,同一水樣的高錳酸鉀指數的具體值CODMn一般都低于其CODCr值,即CODMn只能表示水中容易氧化的有機物或無機物的含量。因此,我國及歐美等許多國家都把CODCr作為控制有機物污染的綜合性指標,而只將高錳酸鉀指數CODMn作為評價監測海水、河流、湖泊等地表水體或飲用水有機物含量的一種指標。
由于高錳酸鉀對苯、纖維素、有機酸類和氨基酸類等有機物幾乎沒有氧化作用,而重鉻酸鉀對這些有機物差不多都能氧化,因此使用CODCr作為表示廢水的污染程度和控制污水處理過程的參數更為合適。但由于高錳酸鉀指數CODMn測定簡單、迅速,在對較清凈的地表水進行水質評價時仍使用CODMn來表示其受到的污染程度,即其中的有機物數量。
11.如何通過分析廢水的BOD5與CODCr來判定廢水的可生化性?
當水中含有有毒有機物時,一般不能準確測定廢水中的BOD5值,而采用CODCr值可以較準確地測定水中有機物的含量,但CODCr值又不能區別可生物降解和不可生物降解的物質。人們習慣于利用測定污水的BOD5/CODCr來判斷其可生化性,一般認為,污水的BOD5/CODCr大于0.3就可以利用生物降解法進行處理,如果污水的BOD5/CODCr低于0.2,則只能考慮采用其他方法進行處理。
12.BOD5與CODCr的關系如何?
生化需氧量BOD5表示的是污水中有機污染物在進行生化分解過程中所需要的氧量,能夠直接從生物化學意義上說明問題,因此BOD5不僅僅是一個重要的水質指標,更是污水生物處理過程中的一個極為重要的控制參數。但是,BOD5在使用上也受到一定限制,一是測定時間較長(5d),不能及時反映和指導污水處理裝置的運行,二是因為有些生產污水不具備微生物生長繁殖的條件(如存在有毒有機物),無法測定其BOD5值。
化學需氧量CODCr則反映了污水中幾乎所有有機物和還原性無機物的含量,只是不能象生化需氧量BOD5那樣直接從生化意義上說明問題。也就是說,化驗污水的化學需氧量CODCr值可以較準確地測定水中有機物含量,但化學需氧量CODCr不能區別可生物降解有機物和不可生物降解的有機物。
化學需氧量CODCr值一般高于生化需氧量BOD5值,其間的差值能夠約略地反映污水中不能被微生物降解的有機物含量。對于污染物成份相對固定的污水來說,CODCr與BOD5之間一般都有一定的比例關系,可以互相推算。加上CODCr的測定所用時間較少,按回流2h的國家標準方法來化驗,從取樣到出結果,只需要3~4h,而測定BOD5值卻需要5d時間,因此在實際污水處理運行管理中,常利用CODCr作為控制指標。
為了盡快指導生產運行,有的污水處理場還制定了回流5min測定CODCr的企業標準,測得結果雖然與國家標準方法有一定誤差,但由于誤差為系統誤差,連續監測的結果可以正確地反應水質的實際變化趨勢,測定時間卻可以減少到1h以內,對及時調整污水處理運行參數和防止水質突變對污水處理系統造成沖擊,提供了時間上的保證,也就是說提高了污水處理裝置出水的合格率。
13.CODCr測定的注意事項有哪些?
CODCr測定是以重鉻酸鉀為氧化劑,在酸性條件下利用硫酸銀做催化劑,沸騰回流2h,通過測定重鉻酸鉀的消耗量,再折算成的氧消耗量(GB11914--89)。CODCr測定中使用了重鉻酸鉀、硫酸汞和濃硫酸等藥品,或有-劇-毒或有強烈的腐蝕性,而且需要加熱回流,因此操作必須在通風櫥中進行,并且要十分精心,廢液必須回收并單獨處理。
為了促使水中還原性物質的充分氧化,需要加入硫酸銀做催化劑,而為使硫酸銀分布均勻,應將硫酸銀溶于濃硫酸中,待其全部溶解后(約需2d)再隨起酸化作用的硫酸一起加入錐形瓶中。國家標準化驗方法規定每測定一次CODCr(20mL水樣)要加入0.4gAg2SO4/30mLH2SO4,但有關資料表明,對于一般的水樣,投加0.3gAg2SO4/30mLH2SO4是完-全足量的,沒有必要使用更多的硫酸銀。對經常測定的污水水樣,如果有充分的數據對照,還可以適當減少硫酸銀的用量。
CODCr是污水中有機物含量的指標,因此測定時一定要將氯離子和無機還原物質的耗氧除去。對于Fe2+、S2-等無機還原物的干擾,可根據其測定的濃度,由理論需氧量對已測的CODCr值加以校正。對氯離子Cl-1的干擾,一般采用硫酸汞去除,其加入量為每20mL水樣0.4gHgSO4時,可去除2000mg/L氯離子的干擾。對經常測定的各種成份相對固定的污水水樣,如果氯離子含量較少或使用稀釋倍數較高的水樣測定,可以適當減少硫酸汞的用量。
14.硫酸銀的催化機理是什么?
硫酸銀的催化機理是,有機物中含羥基的化合物在強酸性介質中首先被重鉻酸鉀氧化成羧酸,由羥基有機物生成的脂肪酸與硫酸銀作用生成脂肪酸銀,由于銀原子的作用,使羧基很容易地生成二氧化碳和水,同時生成新的脂肪酸銀,但其碳原子要比前者少一個,如此循環往復,逐步使有機物全部氧化成二氧化碳和水。
15.BOD5測定的注意事項有哪些?
BOD5測定通常采用標準稀釋與接種法(GB7488--87),其操作為,經中和及除去毒性物質并經稀釋后的水樣(必要時加入適量含好氧微生物的接種液)置入培養瓶中,于在20oC暗處培養5d,通過分別測定培養前后水樣中溶解氧的含量,來計算出5d內的耗氧量,再根據稀釋倍數求得其BOD5。
BOD5的測定是生物作用和化學作用的共同結果,必須嚴格按照操作規范進行,變更任何一個條件,都將影響測定結果的準確性和可比性。影響BOD5測定的條件包括pH值、溫度、微生物種類和數量、無機鹽含量、溶解氧和稀釋倍數等。
化驗BOD5的水樣必須充滿并密封于取樣瓶中,在2~5oC的冷藏箱內保存到分析時。一般應在采樣后6h內進行檢驗,在任何情況下,水樣的貯存時間不能超過24h。
測定工業廢水的BOD5時,由于工業廢水通常溶解氧含量較少而且成分多為可生化降解的有機物,為保持培養瓶內的好氧狀態,必須將水樣稀釋(或接種稀釋),這一操作是標準稀釋法的最大特征。為確保測得結果的可靠性,對于稀釋后的水樣培養5d的耗氧量必須大于2mg/L,殘留溶解氧必須大于1mg/L。
投入接種液是為了保證有一定量的微生物降解水中的有機物,接種液的量以使5日耗氧0.1mg/L以下為佳。使用由金屬蒸餾器制備的蒸餾水作為稀釋水時,應注意檢查其中的金屬離子含量,以避免因此抑制微生物繁殖和代謝。為確保稀釋水中溶解氧接近飽和,必要時可通入凈化空氣或純氧,然后于在20oC培養箱中放置一定時間,使之與空氣中氧分壓達到平衡。
稀釋倍數的確定是以培養5日耗氧大于2mg/L,剩余溶解氧大于1mg/L為原則。稀釋倍數過大或過小,都會導致檢驗失敗。而且由于BOD5分析周期較長,一旦出現類似情況,就無法以原樣補測。初測某一工業廢水的BOD5時,可以首先測定其CODCr,然后查閱參考已有的水質類似的廢水的有關監測數據,初步確定待測水樣BOD5/CODCr值,據此推算出BOD5的大致范圍和確定稀釋倍數。
對含有抑制或殺滅好氧微生物代謝活動的物質的水樣,直接用通常方法測定BOD5的結果會偏離實際值,必須在測定前做相應的預處理,這些對BOD5測定有影響的物質和因素包括重金屬及其他有毒的無機物或有機物、余氯等氧化性物質、pH值過高或過低等。
16.測定工業廢水的BOD5時為什么要進行接種?如何接種?
BOD5的測定是一個生物化學耗氧過程,水樣中的微生物以水中有機物為營養生長繁殖的同時,分解有機物并消耗了水中的溶解氧,因此水樣中必須含有一定數量的對其中有機物有降解能力的微生物。
工業廢水中一般都含有數量不等的有毒物質,這些有毒物質會對微生物的活動產生抑制作用,因此工業廢水中自有微生物的數量很少甚至根本沒有。如果采用測定微生物含量豐富的城市污水的普通方法,可能就檢測不到廢水中真正有機物的含量,至少是偏低。比如經高溫和滅菌處理及pH過高或過低的水樣,除了需要采取進行降溫、還原殺菌劑或調整pH值等預處理措施外,為保證測定BOD5時的準確性,也必須進行有效接種。
測定工業廢水的BOD5時,如果毒性物質含量太大,有時還要用藥劑予以去除;如果廢水呈酸性或堿性,還要*行中和處理;而且通常水樣要經過稀釋,然后才能采用標準稀釋法測定。向水樣中水加入適量含經過馴化的好氧微生物的接種液(如處理這種工業廢水的曝氣池混合液),就是為了使水樣中含有一定數量的對有機物具有降解能力的微生物。在滿足其他測定BOD5的條件下,利用這些微生物分解工業廢水中的有機物,測定水樣培養5d的耗氧量,即可得到工業廢水的BOD5值。
污水處理場的曝氣池混合液或二沉池出水是測定進入污水處理廠的廢水BOD5時的理想的微生物種源。直接用生活污水接種,因其中溶解氧很少甚至沒有,容易出現厭氧微生物,需要長時間培養馴化,因此,這種經過馴化的接種液僅適用于作為特定需要的某些工業廢水。
17.測定BOD5時制取稀釋水的注意事項有哪些?
稀釋水的質量對BOD5的測定結果的準確性意義重大,因此要求稀釋水空白5日耗氧必須小于0.2mg/L,最好能控制在0.1mg/L以下,接種稀釋水5日耗氧應在0.3~1.0mg/L之間。
保證稀釋水質量的關鍵在于控制其有機物的含量最-低和抑制微生物繁殖的物質含量最-低,因此最好使用蒸餾水作為稀釋水,不宜使用離子交換樹脂制得的純水作為稀釋水,因為去離子水往往含有從樹脂中分離出的有機物。如果制備蒸餾水的自來水中含有某些揮發性有機物,為預防其殘留在蒸餾水中,就應在蒸餾前進行去除有機物的預處理。由金屬蒸餾器制得的蒸餾水,應注意檢查其中的金屬離子含量,以免發生抑制微生物的繁殖和代謝,影響BOD5測定結果的準確性。
如果所用稀釋水因含有有機物而不符合使用要求時,可采取加入適量曝氣池接種液后,在室溫或20oC條件下貯存一定時間的方法予以消除影響。接種的量以5d耗氧約0.1mg/L為原則,為防止藻類繁殖,貯存必須在暗室中進行。如果貯存后的稀釋水有沉渣,只能取用上清液,可過濾去除沉渣。
為確保稀釋水的溶解氧接近飽和,必要時可用真空泵或水射器吸入經凈化的空氣,也可用微型空壓機注入經凈化的空氣,還可用氧氣瓶通入純氧,然后將經過充氧的稀釋水在20oC培養箱中放置一定時間,使溶解氧達到平衡。冬季在較低室溫放置的稀釋水可能含有過多的溶解氧,夏季高溫季節則恰好相反,因此在室溫與20oC有明顯差別時,一定要放置在培養箱內穩定一段時間,使之和培養環境的氧分壓平衡。
18.測定BOD5時如何確定稀釋倍數?
稀釋倍數過大或過小,可導致5d耗氧量太少或太多,超出正常耗氧范圍使實驗失敗。而由于BOD5的測定周期很長,一旦出現此類情況,就無法以原樣補測。因此,必須十分重視稀釋倍數的確定。
工業廢水的組分雖然復雜,但其BOD5值與CODCr值之比通常在0.2~0.8之間,造紙、印染、化工等廢水比值較低,食品工業廢水則較高。一些含有顆粒狀有機物的廢水如酒糟廢水等,在測定其BOD5時,會由于顆粒物沉淀于培養瓶底不能參加生化反應,造成比值明顯偏低。
稀釋倍數的確定是按測定BOD5時,5d耗氧應大于2mg/L、剩余溶解氧大于1mg/L這兩個條件為原則。稀釋后當日培養瓶中的DO為7~8.5mg/L,假設5d耗氧量為4mg/L,則稀釋倍數為CODCr值分別與0.05、0.1125、0.175三個系數的乘積。例如用250mL培養瓶測定CODCr為200mg/L的水樣BOD5時,三個稀釋倍數分別為:①200×0.005=10倍,②200×0.1125=22.5倍,③200×0.175=35倍。如果采用直接稀釋法,則取水樣的體積分別為:①250÷10=25mL,②250÷22.5≈11mL,③250÷35≈7mL。
照此取樣培養,將有1~2個測得的溶解氧結果符合上述兩個原則。如果有兩個稀釋比符合上述原則,計算結果時,應取其平均值。如果剩余的溶解氧小于1mg/L、甚至為零時,應加大稀釋比。如果培養期間溶解氧消耗量小于2mg/L,一個可能是稀釋倍數過大;另一個可能是微生物菌種不適應、活性差,或有毒物質的濃度過大,此時還可能出現稀釋倍數大的培養瓶消耗溶解氧反而較多的現象。
如果稀釋水為接種稀釋水,由于空白水樣耗氧為0.3~1.0mg/L,所以稀釋系數分別為0.05、0.125和0.2。
如果已知水樣CODCr具體值或大概范圍,可以較容易地按上述稀釋倍數去分析其BOD5值。當不知道水樣的CODCr范圍,為了縮短分析時間,可在測定CODCr過程中進行估算。具體做法是:首先配制每升中含有0.4251g鄰苯二甲酸氫鉀的標準溶液(此液CODCr值為500mg/L),然后按比例稀釋成CODCr值分別為400mg/L、300mg/L、200mg/L、100mg/L的稀溶液。分別移取20.0mLCODCr值為100mg/L~500mg/L的標準溶液,按常法加入試劑,進行CODCr值測定。加熱煮沸騰回流30min后,自然冷卻到常溫再加蓋保存,制成標準比色系列。按照常法測定水樣的CODCr值過程中,當煮沸回流進行到30min時,用預熱后的標準CODCr值色列進行對比,估算出水樣的CODCr值,依此確定化驗BOD5時的稀釋倍數。對含有難消解有機物的印染、造紙、化工等工業廢水,必要時在煮沸回流到60min時再進行比色估算。
19.測定BOD5時水樣稀釋法有幾種?操作注意事項有哪些?
測定BOD5時水樣稀釋法分一般稀釋法和直接稀釋法兩種,其中一般稀釋法需要使用的稀釋水或接種稀釋水數量較多。
一般稀釋法是在1L或2L量筒中,加入稀釋水或接種稀釋水約500mL,然后加入計算而得的一定體積的水樣,再加稀釋水或接種稀釋水到滿量程,用末端裝有橡皮圓片的玻璃棒在水面下慢慢作上提或下沉式攪動,最后用虹吸管將已經混合均勻的水樣溶液引入培養瓶中,并使充滿溢出少許,小心蓋緊瓶塞,并水封瓶口。對第二或第三個稀釋倍數的水樣,可利用剩余的混合液,經計算后在添加一定量的稀釋水或接種稀釋水,用同樣的方法混合并引入培養瓶。
直接稀釋法是先以虹吸法在已知容積的培養瓶中引入約一半容積的稀釋水或接種稀釋水,然后沿瓶壁注入根據稀釋倍數計算出的每一培養瓶中應加入的水樣體積,再引入稀釋水或接種稀釋水至瓶頸,小心蓋緊瓶塞,并水封瓶口。
使用直接稀釋法時,特別要注意最后引入稀釋水或接種稀釋水時一定不能過快。同時要摸索引入最適體積的操作規律,避免過量溢出而產生的誤差。
無論使用哪種方法,在將水樣引入培養瓶時,動作必須要輕緩,避免發生氣泡,以防空氣溶入水中或水中氧氣溢出。同時要保證在蓋緊瓶蓋時一定要細心,避免瓶內留有氣泡而影響測定結果。培養瓶在培養箱內培養時,每天都要檢查其水封情況,及時填水,以防止封口水份蒸干而使瓶內進入空氣。此外,5d前后使用的兩個培養瓶的體積必須相同,以減小誤差。
20.測定BOD5時可能出現的問題有哪些?
對有硝化作用的污水處理系統的出水進行BOD5測定時,由于其中含有很多硝化細菌,測定結果中就包含了氨氮等含氮物質的需氧量。當需要區分水樣中含碳物質的需氧量和含氮物質的需氧量時,可采用在稀釋水中加入硝化抑制劑的方法消除BOD5測定過程中的硝化作用,比如在每升稀釋水中加入10mg2-氯-6-(三氯甲基)砒啶或10mg丙烯基硫脲等。
BOD5/CODCr接近1甚至大于1,往往說明檢測過程出現了差錯,必須對檢測的每個環節進行審核,尤其要注意水樣取用是否均勻。而BOD5/CODMn接近1甚至大于1卻可能是正常的,因為高錳酸鉀對水樣中有機組分的氧化程度要比重鉻酸鉀低很多,同一水樣的CODMn值有時會比CODCr值低很多。
當出現規律性的稀釋倍數越大、BOD5值越高的現象時,原因通常是水樣中含有抑制微生物生長繁殖的物質。稀釋倍數低時,水樣中所含抑制物質的比例就越大,使細菌無法進行有效的生物降解作用,導致BOD5的測定結果偏低。此時應查找抑菌物質的具體成分或原因,測定前進行有效地預處理予以消除或掩蔽。
BOD5/CODCr偏低時,比如低于0.2甚至低于0.1,如果測定的是工業廢水,可能因為水樣中的有機物可生物降解性很差,但如果測定的水樣是城市污水或混有一定比例生活污水的工業廢水,除了因為水樣中含有化學毒性物質或抗菌素外,比較常見的原因是pH值非中性和存在余氯類殺菌劑等。為避免失誤,在BOD5的測定過程中,水樣和稀釋水的pH值一定要分別調節到7和7.2,對有可能存在余氯等氧化劑的水樣,要作例行檢查。
聯系我們
北京北信科遠儀器有限責任公司 公司地址:北京市昌平區小辛莊工業園108號 技術支持:化工儀器網掃一掃 更多精彩
微信二維碼
網站二維碼